Chebyshev Polynomials and Best Rank-one Approximation Ratio
نویسندگان
چکیده
منابع مشابه
On orthogonal tensors and best rank-one approximation ratio
As is well known, the smallest possible ratio between the spectral norm and the Frobenius norm of an m× n matrix with m ≤ n is 1/ √ m and is (up to scalar scaling) attained only by matrices having pairwise orthonormal rows. In the present paper, the smallest possible ratio between spectral and Frobenius norms of n1×· · ·×nd tensors of order d, also called the best rank-one approximation ratio i...
متن کاملThe Best Rank-One Approximation Ratio of a Tensor Space
Abstract. In this paper we define the best rank-one approximation ratio of a tensor space. It turns out that in the finite dimensional case this provides an upper bound for the quotient of the residual of the best rankone approximation of any tensor in that tensor space and the norm of that tensor. This upper bound is strictly less than one, and it gives a convergence rate for the greedy rank-o...
متن کاملOn best rank one approximation of tensors
Today, compact and reduced data representations using low rank data approximation are common to represent high-dimensional data sets in many application areas as for example genomics, multimedia, quantum chemistry, social networks or visualization. In order to produce such low rank data representations, the input data is typically approximated by so-called alternating least squares (ALS) algori...
متن کاملOn Polynomials of Best One Sided Approximation
Nutzungsbedingungen Mit dem Zugriff auf den vorliegenden Inhalt gelten die Nutzungsbedingungen als akzeptiert. Die angebotenen Dokumente stehen für nicht-kommerzielle Zwecke in Lehre, Forschung und für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und unter deren Einhaltung weitergegeben werden. Die Spei...
متن کاملTECHNISCHE UNIVERSITÄT BERLIN On best rank one approximation of tensors
In this paper we suggest a new algorithm for the computation of a best rank one approximation of tensors, called alternating singular value decomposition. This method is based on the computation of maximal singular values and the corresponding singular vectors of matrices. We also introduce a modification for this method and the alternating least squares method, which ensures that alternating i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2020
ISSN: 0895-4798,1095-7162
DOI: 10.1137/19m1269713